Tableau 5. Distances interatomiques les plus courtes

L'indice 'indique la transformation ($x, \frac{1}{2}-y, z-\frac{1}{2}$)		
L'indice	" indique la transformat	x,
L'indice ${ }^{\prime \prime}$	" indique la transformat	- x, $\frac{1}{2}+$
	$\mathrm{C}(3, \mathrm{I}) \cdots \mathrm{C}(6, \mathrm{I}+a)$	3,68 \AA
	$\mathrm{C}(5, \mathrm{I}) \cdots \mathrm{C}(14, \mathrm{II})$	3,69
	$\mathrm{C}(6, \mathrm{I}) \cdots \mathrm{C}(14, \mathrm{II})$	3,80
	$\mathrm{C}(7, \mathrm{I}) \cdots \mathrm{C}(12, \mathrm{II})$	3,78
	$\mathrm{C}(12, \mathrm{II}) \cdots \mathrm{C}(9, \mathrm{II}+a)$	3,72
	$\mathrm{C}(14, \mathrm{II}) \cdots \mathrm{C}(9, \mathrm{II}+a)$	3,78
	$\mathrm{C}(2, \mathrm{I}) \cdots \cdot \mathrm{C}\left(8, \mathrm{II}^{\prime}\right)$	3,79
	$\mathrm{C}(2, \mathrm{I}) \cdots \cdot \mathrm{C}\left(9, \mathrm{II}^{\prime}\right)$	3,71
	$\mathrm{O}(1, \mathrm{I}) \cdots \mathrm{C}\left(8, \mathrm{II}^{\prime}+a\right)$	3,41
	$\mathrm{O}(1, \mathrm{I}) \cdots \mathrm{C}\left(9, \mathrm{II}^{\prime}+a\right)$	3,50
	$\mathrm{C}(3, \mathrm{I}) \cdots \mathrm{C}\left(7, \mathrm{I}^{\prime \prime}\right)$	3,64
	$\mathrm{C}(4, \mathrm{I}) \cdots \mathrm{C}\left(4, \mathrm{I}^{\prime \prime}\right)$	3,63
	$\mathrm{C}(4, \mathrm{I}) \cdots \mathrm{C}\left(7, \mathrm{I}^{\prime \prime}\right)$	3,68
	$\mathrm{C}(14, \mathrm{II}) \cdots \mathrm{O}\left(2, \mathrm{II}{ }^{\prime \prime \prime}\right)$	3,34
	$\mathrm{C}(1, \mathrm{I}) \cdots \mathrm{O}\left(2, \mathrm{II}^{\prime \prime}\right)$	3,71
	$\mathrm{O}(1, \mathrm{I}) \cdots \mathrm{C}\left(8, \mathrm{I}^{\prime \prime \prime}\right)$	3,37
	$\mathrm{O}(1, \mathrm{I}) \cdots \mathrm{C}\left(13, \mathrm{II}^{\prime \prime \prime}\right)$	3,42
	$\mathrm{O}(1, \mathrm{I}) \cdots \mathrm{O}\left(2, \mathrm{II}^{\prime \prime \prime}\right)$	2,70
	$\mathrm{O}(1, \mathrm{I}) \cdots \mathrm{O}\left(2, \mathrm{II}^{\prime}+a\right)$	2,66

Références

Bacon, G. E. \& Curry, N. A. (1956). Proc. Roy. Soc. A235, 552.
Bois, C. (1956). Bull. Soc. chim. Fr. 12, 4016.
Brown, C. J. (1956). Acta Cryst. 21, 170.
Brusset, H., Gillier-Pandraud, H. \& Viossat, C. (1966). C. R. Acad. Sci. Paris, 263, Série C, 53.

Busing, W. R. \& Levy, H. A. (1962). Report ORNL-TM305, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
Coppens, P. \& Schmidt, G. M. J. (1965). Acta Cryst. 18, 62, 654.
Gillier-Pandraud, H. (1965). Bull. Soc. chim. Fr. 11, 3267.
Glllier-Pandraud, H. (1966). C. R. Acad. Sci. Paris, 262, Série C, 1860.

Fig. 7. Projection de deux molécules translatées de a, perpendiculairement à leur plan (molécules I et II).

Hirshfeld, F. L. (1964). Israel J. Chem. 2, 87.
James, R. W. (1950). The Optical Principles of the Diffraction of X-rays. London: Bell.
Julg, A. (1964). Chimie Théorique. Paris: Dunod.
Moe, K. M. (1963). Acta Cryst. 16, A58.
Renaud, M. \& Fourme, R. (1967). Acta Cryst. 22, 695.
Robertson, J. M. (1936). Proc. Roy. Soc. A157, 79.
Scheringer, C. (1963). Z. Kristallogr. 119, 273.

The Crystal and Molecular Structure of Tetraphosphorus Triselenodiiodide

By G.J.Penney and G. M. Sheldrick
University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, England

(Received 16 December 1969)
Crystals of $\mathrm{P}_{4} \mathrm{Se}_{3} \mathrm{I}_{2}$ are orthorhombic, space group Pnma, with $a=9.78, b=16.32, c=6.80 \AA, D=3.76$, and $D_{x}=3.76$ for $Z=4$. The molecules possess a crystallographic plane of symmetry and a basket structure different from that of $\mathrm{P}_{4} \mathrm{~S}_{3} \mathrm{I}_{2}$. The P-I and P-P bond lengths are 2.47 and $2.22 \AA$ respectively; the mean $\mathrm{P}-\mathrm{Se}$ bond length is $2 \cdot 24 \AA$.

Introduction

The phosphorus sulphides undergo complex reactions with bromine and iodine, and the structures of the products indicate that considerable skeletal rearrangements occur even under mild conditions (Topsom \&

Wilkins, 1956; Andrews, Ferguson \& Wilkins, 1963; Einstein, Penfold \& Tapsell, 1965). The only reported investigation of the phosphorus selenohalides is by Mai (1927), who prepared a compound of empirical formula $\mathrm{P}_{4} \mathrm{Se}_{3} \mathrm{I}_{2}$ by the action of iodine on $\mathrm{P}_{4} \mathrm{Se}_{3}$ in carbon disulphide solution. In order to confirm this obser-
vation, and in view of the unique 'basket' structure of $\mathrm{P}_{4} \mathrm{~S}_{3} \mathrm{I}_{2}$ (Wright \& Penfold, 1959), the crystal structure of $\mathrm{P}_{4} \mathrm{Se}_{3} \mathrm{I}_{2}$ has been determined.

Experimental

Tetraphosphorus triselenodiiodide was prepared according to the method of Mai, by mixing carbon disulphide solutions of $\mathrm{P}_{4} \mathrm{Se}_{3}$ and iodine, and leaving the solution for three days at $0^{\circ} \mathrm{C}$. A deep red precipitate was formed in low yield, and was well washed with warm carbon disulphide. Some decomposition was found to occur, the products being soluble in carbon disulphide. The infrared spectrum was obtained from a Nujol mull of the compound between CsBr plates, and showed the following rather weak absorption bands: 385(m), $345(w), 318(s), 302(m) \mathrm{cm}^{-1}$ ($w=$ weak, $m=$ medium, $s=$ strong). The mass spectrum showed a very weak molecular ion, but the complex base peak centred on $m / e=488$ was in good agreement with the multiplet predicted for $\mathrm{P}_{4} \mathrm{Se}_{3} \mathrm{I}^{+}$using the natural abundance isotopic distribution for selenium $\left(\mathrm{P}_{4} \mathrm{~S}_{3} \mathrm{I}_{2}\right.$ similarly shows a very strong $\mathrm{P}_{4} \mathrm{~S}_{3} \mathrm{I}^{+}$peak, but only a weak molecular ion). All the intensity data were collected using a single crystal sealed in a 0.5 mm Lindemann glass tube. This crystal was a lamina of approximate dimensions $0.2 \times$ $0.2 \times 0.006 \mathrm{~mm}$, with principal faces of the form $\{010\}$.

Crystal data

$\mathrm{P}_{4} \mathrm{Se}_{3} \mathrm{I}_{2}$, orthorhombic, $a=9.783$ (9), $b=16 \cdot 320$ (22), $c=6.800$ (6) $\AA, U=1086 \AA^{3}$. Density found by pycnometry under o-dichlorobenzene, $3 \cdot 76$; calculated for four molecules per unit cell, $3.76{\mathrm{~g} . \mathrm{cm}^{-3}} . \mu_{a}=645.7$ cm^{-1}. Systematic absences were $k+l=2 n+1$ for $0 k l$, and $h=2 n+1$ for $h k 0$, giving the centrosymmetric Pnma or the non-centrosymmetric $P n 2_{1} a$ as possible space groups; Pnma was confirmed by successful refinement of the structure. Intensities were estimated visually in the usual way from equi-inclination Weissenberg photographs (layers 0 kl to 8 kl) taken with the crystal mounted about the [100] axis. Anti-equi-inclination zero-layer photographs ($\mu=9 \cdot 0^{\circ}$) were recorded with the crystal mounted about [010], since $\mu=0$ would have led to the incident beam lying in the plane of the lamina, with virtually total absorption. Lorentz, polarization and absorption corrections were applied, the latter being calculated exactly for an infinite flat and a given value of $\mu_{a} t$. Eight reflexions were rejected because it was calculated that the incident or reflected beams lay very close to the plane of the lamina, resulting in very strong absorption and relatively large errors arising from edge effects. At this stage the $h 0 l$ data were incorporated in the rest of the data, placing all the reflexions on an approximately self-consistent scale using the linear least-squares method of Rae \& Blake (1966).

The absorption coefficient was refined by the method of Sheldrick \& Sheldrick (1970): a data reduction and least-squares refinement (as in the final refinement but with isotropic temperature factors for the selenium at-
oms) were performed for each of seven values of $\mu_{a} t$ ranging from 0.1 to 0.7 . A plot of the resulting generalized index $R=V\left(\sum w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2} / \sum w F_{o}^{2}\right)$ against $\mu_{a} l$ consisted of a smooth curve with a minimum at $\mu_{a} t=$ $0 \cdot 38$, corresponding to a crystal thickness of 0.0060 mm . This value of $\mu_{a} t$ was used in a final calculation of the absorption corrections.

Unit-cell dimensions were obtained by a least-squares fit to all 22 lines of a powder photograph taken with a Guinier focusing camera and silicon internal calibrant ($d=5 \cdot 4306 \AA$). Each line found to correspond to a reflexion of high intensity on the single-crystal photographs. The estimated standard deviations in the unitcell dimensions were multiplied by a factor of two to allow for possible systematic errors.

Table 1. Observed and calculated structure factors
Since the interlayer scale factors were refined, it is necessary to multiply these values (which are on an absolute scale) by $0.0154,0.0160,0.0181,0.0208,0.0195,0.0198,0.0224,0.0316$ and 0.0157 for $0 \mathrm{kl}, \ldots, 8 \mathrm{kl}$ respectively for use in the weighting scheme. The strong reflexion 002 was omitted from the final least-squares refinements owing to extinction.

Structure solution and refinement

In the space group Pnma the asymmetric unit consists of half of one $\mathrm{P}_{4} \mathrm{Se}_{3} \mathrm{I}_{2}$ molecule; at least one atom (Se) must lie in the mirror plane. A three-dimensional Patterson synthesis was interpreted to give the iodine coordinates; the other atoms were located by difference Fourier synthesis. The structure was refined by fullmatrix least-squares with anisotropic temperature factors for the iodine and selenium atoms and isotropic temperature factors for the phosphorus atoms. Since it was also found necessary to refine the inter-layer scale factors, anisotropic temperature factors could not be refined for all atoms. The complex neutral-atom scattering factors of Cromer (1965) and Cromer \& Waber (1965) were employed for all atoms. The weighting scheme adopted on the basis of an analysis of variance was $w=1 /\left(0.95-\left|F_{o}\right|+0.35 F_{o}^{2}\right)$; the mean value of $w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2}$ was almost independent of the magnitudes of F_{o} and $\sin \theta$. The refinement converged giving a weighted index $R=\sum w^{1 / 2}\left(\left|F_{0}\right|-\left|F_{c}\right|\right) / \sum w^{1 / 2}\left|F_{0}\right|$ of 0.109 and a corresponding unweighted R index of 0.112 for 337 unique non-zero reflexions. The 43 parameters refined consisted of 15 positional parameters, 16 anisotropic temperature factor components (for the iodine and selenium atoms), isotropic temperature factors for the three phosphorus atoms, 8 inter-layer scale factors and one overall scale factor. A final difference electron density synthesis showed no unexpected features; the strongest maxima were 0.2 times the intensity of the weakest P atom.

Observed and calculated structure factors are shown in Table 1 and the results from the final full-matrix least-squares cycle are given in Tables 2 and 3. These results together with the full covariance-matrix and the standard deviations in the unit-cell dimensions were used to calculate the bond lengths, angles, and standard deviations shown in Table 4 and Fig. 1, and also the

Fig. 1. The molecular dimensions of $\mathrm{P}_{4} \mathrm{Se}_{3} \mathrm{I}_{2}$; comparison with the structure of $\mathrm{P}_{4} \mathrm{~S}_{3} \mathrm{I}_{2}$.
non-bonded distances given in Tableo 5. Ncorrections for libration have been applied. The [010] projection of the structure is shown in Fig. 2.

Discussion

The $\mathrm{P}_{4} \mathrm{Se}_{3} \mathrm{I}_{2}$ molecules are approximately hexagonal close-packed, with layers parallel to the mirror planes at $y / b=0.25$ and 0.75 , consistent with the crystal habit of laminae with principal faces of the form $\{010\}$. The shortest intra-layer intermolecular contact is $3.46 \AA$, between $\mathrm{Se}(2)$ and $\mathrm{P}(3)$, both atoms lying on the mirror

Table 2. Atom coordinates and isotropic vibrational amplitudes $\left(\AA^{2} \times 1000\right)$ with estimated standard deviations

	x / a	y / b	z / c	\bar{O}
(P1)	$0.4835(23)$	$0.1476(12)$	$0.4449(25)$	$33(6)$
(P2)	$0.2499(44)$	0.2500	$0.7648(53)$	$58(9)$
(P3)	$0.3691(38)$	0.2500	$0.3076(36)$	$35(7)$

Table 3. Atom coordinates and anisotropic vibrational amplitudes ($\AA^{2} \times 1000$) with estimated standard deviations The anisotropic temperature factor takes the form:

$\exp \left[-2 \pi^{2}\left(U_{11} h^{2} a^{* 2}+U_{22} k^{2} b^{* 2}+U_{33} l c^{* 2}+2 U_{23} k l b^{*} c^{*}+2 U_{31} l h c^{*} a^{*}+2 U_{12} h k a^{*} b^{*}\right)\right]$									
	x / a	y / b	z / c	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
I	$0.3526(8)$	$0.0392(3)$	$0.274(11)$	$93(12)$	$50(3)$	$54(4)$	$-2(4)$	$-19(4)$	$-9(5)$
$\mathrm{Se}(1)$	$0.3920(10)$	$0.1416(5)$	$0.7549(12)$	$58(13)$	$54(4)$	$32(4)$	$10(6)$	$-7(4)$	$-11(6)$
$\operatorname{Se}(2)$	$0.1694(15)$	0.2500	$0.4598(17)$	$24(14)$	$121(14)$	$35(6)$	0	$-8(7)$	0

Table 4. Interatomic distances and bond angles with estimated standard deviations in parantheses
Distances
$\mathrm{I}-\mathrm{P}(1)$
$\mathrm{Se}(1)-\mathrm{P}(2)$
$\mathrm{Se}(2)-\mathrm{P}(3)$
$2 \cdot 47(2) \AA$
$2.25(3)$
$2 \cdot 21(4)$

$\mathrm{P}(1)-\mathrm{Se}(1)$	$2 \cdot 29(2) \AA$
$\mathrm{P}(2)-\mathrm{Se}(2)$	$2 \cdot 22(4)$
$\mathrm{P}(3)-\mathrm{P}(1)$	$2 \cdot 22(3)$

Angles

$\mathrm{P}(3)-\mathrm{P}(1)-\mathrm{Se}(1)$	$102 \cdot 8(1 \cdot 1)^{\circ}$
$\mathrm{I}-\mathrm{P}(1)-\mathrm{Se}(1)$	$101 \cdot 4(0.8)$
$\mathrm{Se}(1)-\mathrm{P}(2)-\mathrm{Se}(2)$	$101 \cdot 0(1 \cdot 2)$
$\mathrm{P}(3)-\mathrm{P}(1)-\mathrm{I}$	$94 \cdot 6(1 \cdot 0)$
$\mathrm{Se}(1)-\mathrm{P}(2)-\mathrm{Se}(1)$	$103.6(1 \cdot 3)$

$\mathrm{Se}(2)-\mathrm{P}(3)-\mathrm{P}(1)$	$104 \cdot 4(1 \cdot 0)^{\circ}$
$\mathrm{P}(1)-\mathrm{Se}(1)-\mathrm{P}(2)$	$103 \cdot 6(1 \cdot 1)$
$\mathrm{P}(2)-\mathrm{Se}(2)-\mathrm{P}(3)$	$97 \cdot 1(1 \cdot 5)$
$\mathrm{P}(1)-\mathrm{P}(3)-\mathrm{P}(1)$	$97 \cdot 8(1 \cdot 5)$

Table 5. Shortest non-bonded distances

$\mathrm{P}(2)-\mathrm{P}(3)$	$3.32 \AA$	intramolecular, through one angle
$\mathrm{P}(1)-\mathrm{P}(1)$	$3 \cdot 34$	
$\mathrm{Se}(1)-\mathrm{Se}(2)$	$3 \cdot 45$ 3.45	
$\mathrm{Se}(2)-\mathrm{P}(3)$	$3 \cdot 46$	intermolecular, within a layer
$\mathrm{P}(1)-\mathrm{Se}(2)$	$3 \cdot 50$	
$\mathrm{Se}(1)-\mathrm{P}(3)$	$3 \cdot 53$	intramolecular, through one angle
$\mathrm{Se}(1)-\mathrm{Se}(1)$ $\mathbf{P}(1)-\mathrm{P}(2)$	$3 \cdot 54$ $3 \cdot 57$	
$\mathrm{P}(1)-\mathrm{P}(2)$	3.67	intermolecular, within a layer
$\mathrm{I}-\mathrm{-Se}(1)$	$3 \cdot 69$	intramolecular, through one angle
$\mathrm{P}(1)-\mathrm{Se}(2)$	3.70	intermolecular, within a layer
$\mathrm{Se}(1)-\mathrm{Se}(2)$	$3 \cdot 78$	
$\mathrm{I}-\mathrm{Ce}(1)$	$3 \cdot 80$	intermolecular, between layers
$\mathrm{I}-\mathrm{Se}(1)$	$3 \cdot 87$	

plane. The shortest inter-layer intermolecular distance is $3.80 \AA$, between I and $\mathrm{Se}(1)$. Both $\mathrm{P}_{4} \mathrm{~S}_{3}$ (Leung, Waser, van Houten, Vos \& Wiebenga, 1957) and $\mathrm{P}_{4} \mathrm{Se}_{3}$

Fig.2. Projection of the crystal structure perpendicular to \boldsymbol{y}.
(Keulen \& Vos, 1959) have been reported in the space group Pmnb: if the axes are rotated into the conventional Pnma orientation, then both these molecules, like $\mathrm{P}_{4} \mathrm{Se}_{3} \mathrm{I}_{2}$, are approximately hexagonal close-packed with layers perpendicular to $\{010\}$ and the mirror planes bisecting the molecules. Thus the [010] projections of all three structures are remarkably similar. In $\mathrm{P}_{4} \mathrm{Se}_{3} \mathrm{I}_{2}$, however, the iodine atoms project outwards from the layers, resulting in the value of $16.32 \AA$ for b, compared with $9.66 \AA$ in $\mathrm{P}_{4} \mathrm{~S}_{3}$ and $9.74 \AA$ in $\mathrm{P}_{4} \mathrm{Se}_{3}$.

The structures of $\mathrm{P}_{4} \mathrm{Se}_{3} \mathrm{I}_{2}$ and $\mathrm{P}_{4} \mathrm{~S}_{3} \mathrm{I}_{2}$ are compared in Fig. 1. The basket skeletons of the two molecules differ in that the two five-membered rings are related by a twofold axis in $\mathrm{P}_{4} \mathrm{~S}_{3} \mathrm{I}_{2}$ and by a mirror plane in $\mathrm{P}_{4} \mathrm{Se}_{3} \mathrm{I}_{2}$. Whereas the formation of $\mathrm{P}_{4} \mathrm{Se}_{3} \mathrm{I}_{2}$ from $\mathrm{P}_{4} \mathrm{Se}_{3}$ and I_{2} involves merely the rupture of the $P-P$ bond by the iodine molecule, in the corresponding sulphide reaction this step is presumably followed by a skeletal rearrangement. Except for a $\mathrm{P}-\mathrm{P}-\mathrm{I}$ angle of 95°, all the angles in $\mathrm{P}_{4} \mathrm{Se}_{3} \mathrm{I}_{2}$ lie in the range $97-104^{\circ}$. It is rather curious that $\mathrm{P}_{4} \mathrm{~S}_{3} \mathrm{I}_{2}$ adopts a structure with the unusually small mean $\mathrm{P}-\mathrm{P}-\mathrm{S}$ angle of 'fold' of 91°. The values obtained for the $\mathrm{P}-\mathrm{P}$ and $\mathrm{P}-\mathrm{I}$ bond lengths are close to those in $\mathrm{P}_{4} \mathrm{~S}_{3} \mathrm{I}_{2}$ (2.20 and $2.48 \AA$ respectively) and $\mathrm{P}_{2} \mathrm{I}_{4}$ (2.21 and $2.48 \AA$ respectively; Leung $\&$ Waser, 1956). The mean $\mathrm{P}-\mathrm{Se}$ bond length of $2.24 \AA$ is the same as the mean value found by Keulen \& Vos (1959) in $\mathrm{P}_{4} \mathrm{Se}_{3}$. The reasonable final values obtained for the R index and the thermal parameters indicate that the refinement of the absorption parameter has been successful. The thermal motion of the iodine atom is greatest along a line almost perpendicular to the $\mathrm{P}-\mathrm{I}$ bond, consistent with less resistance to $\mathrm{P}-\mathrm{I}$ deformation than stretching.

We are grateful to Dr P. J. Wheatley and the S.R.C. for the provision of experimental facilities, to the S.R.C. for a maintenance grant to G.J.P., and to the University Mathematical Laboratory for the provision of computing facilities. The calculations were performed sing the Titan computer and programs written by G.M.S.

References

Andrews, J. M., Fergusson, J. E. \& Wilkins, C. J. (1963). J. Inorg. Nucl. Chem. 25, 829.

Cromer, D. T. (1965). Acta Cryst. 18, 17.
Cromer, D. T. \& Waber, J. T. (1965). Acta Cryst. 18, 104.
Einstein, F. W. B., Penfold, B. R. \& Tapsell, Q. T. (1965). Inorg. Chem. 4, 186.
Keulen, E. \& Vos, A. (1959). Acta Cryst. 12, 323.
Leung, Y. C. \& Waser, J. (1956). J. Phys. Chem. 60, 539.
leung, Y. C., Waser, J., van Houten, S., Vos, A., Wiegers, G. A. \& Wiebenga, E. H. (1957). Acta Cryst. 10, 574.

MaI, J. (1927). Chem. Ber. 60, 2222.
Rae, A. D. \& Blake, A. B. (1966). Acta Cryst. 20, 586.
Sheldrick, G. M. \& Sheldrick, W. S. (1970). Acta Cryst. B26, 1334.
Topsom, R. D. \& Wilkins, C. J. (1956). J. Inorg. Nucl. Chem. 3, 187.
Wright, D. A. \& Penfold, B. R. (1959). Acta Cryst. 12, 455.

